Projectors on the generalized eigenspaces for functional differential equations using integrated semigroups
نویسندگان
چکیده
The aim of this article is to derive explicit formulas for the projectors on the generalized eigenspaces associated to some eigenvalues for linear functional differential equations (FDE) by using integrated semigroup theory. The idea is to formulate the FDE as a non-densely defined Cauchy problem and obtain an explicit formula for the integrated solutions of the non-densely defined Cauchy problem, from which we then derive explicit formulas for the projectors on the generalized eigenspaces associated to some eigenvalues. The results are useful in studying bifurcations in some semi-linear problems. © 2008 Elsevier Inc. All rights reserved. MSC: 34K05; 35K57; 47A56; 47H20
منابع مشابه
Projectors on the Generalized Eigenspaces for Partial Differential Equations with Time Delay
To study the nonlinear dynamics, such as Hopf bifurcation, of partial differential equations with delay, one needs to consider the characteristic equation associated to the linearized equation and to determine the distribution of the eigenvalues; that is, to study the spectrum of the linear operator. In this paper we study the projectors on the generalized eigenspaces associated to some eigenva...
متن کاملFree vibration analysis of thin annular plates integrated with piezoelectric layers using differential quadrature method
In this article, using generalized differential quadrature (GDQ) methods, free vibration of a thin annular plate coupled with two open circuit piezoelectric layers, is numerically studied based on the classical plate theory. The governing differential equations with respective boundary conditions are derived and transformed into a set of algebraic equations by implementing the GDQ rule, then so...
متن کاملOn impulsive fuzzy functional differential equations
In this paper, we prove the existence and uniqueness of solution to the impulsive fuzzy functional differential equations under generalized Hukuhara differentiability via the principle of contraction mappings. Some examples are provided to illustrate the result.
متن کاملStability of additive functional equation on discrete quantum semigroups
We construct a noncommutative analog of additive functional equations on discrete quantum semigroups and show that this noncommutative functional equation has Hyers-Ulam stability on amenable discrete quantum semigroups. The discrete quantum semigroups that we consider in this paper are in the sense of van Daele, and the amenability is in the sense of Bèdos-Murphy-Tuset. Our main result genera...
متن کاملStochastic differential inclusions of semimonotone type in Hilbert spaces
In this paper, we study the existence of generalized solutions for the infinite dimensional nonlinear stochastic differential inclusions $dx(t) in F(t,x(t))dt +G(t,x(t))dW_t$ in which the multifunction $F$ is semimonotone and hemicontinuous and the operator-valued multifunction $G$ satisfies a Lipschitz condition. We define the It^{o} stochastic integral of operator set-valued stochastic pr...
متن کامل